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Abstract We propose an improved quad&c simplex m e W  for evaluating surface and 
volume i n t e p l s  in the Brillouin mne. "e scheme ulat is commonly used for deriving a 
piecewise quadnuc interpolation of the dispmion misweights the gridpints with respect to 
their symmeuy-induced multipliciq. We suggest subdividing the simplices into smaller oms for 
which diffennt inlerpolating functions are obtained In addition. we dedve analytical expmsions 
for both the surface and volume iotegal in WO dimensions which properly We into yulunt 
the integrable Van Hove singularities. As an example, we discuss the selfconsistent calculatiOn 
of the hole subband srmcflue in a GaAsAlGaAs heterojunction. 

1. Introduction 

In solid state physics we are frequently interested in surface and volume integrals of the 
form 

J ( E )  = f ( l c ) O ( E  -E(k))ddk. (2) s, 
Here E(k) is the energy dispersion, f(k) is a property function and the domain of integration 
2) is the ddimensional Brillouin zone (E). We have I ( E )  = & J ( E ) .  If f(k) 1 then 
I ( E )  is the density of states D ( E )  (DOS). Other quantities that can be defined by such 
integrals are, for example, the charge density, conductivity, dielectric function and magnetic 
susceptibility 1141. 

Seldom are E and f given in terms of analytical expressions. Often we have to content 
ourselves with numerical values of E and f that are obtained on a coarse grid of k- 
points from complicated time-consuming calculations such as total energy or self-consistent 
bandstructure calculations [5-71. Hence the evaluation of I and J has to be based on an 
efficient interpolation of E and f. 

Commonly 2) is restricted to an irreducible wedge of the Brillouin zone (m). Inside 
the IBZ a piecewise linear interpolation is derived for E and f so that the integrals (1) 
and (2) can easily be evaluated analytically. This idea, which was originally introduced 
by Gilat and Raubenheimer [SI, forms the basis of the most frequently used linear simplex 
method of Jepson and Anderson [9] and Lehmann and Taut [lo]. These authors suggested 
replacing the integrals (1) and (2) by a sum of integrals over space-filling simplices Fv. The 
subdivision is performed in such a way that the numerical values of E and f are know for 
the vertices of each simplex, thus defining the interpolating functions. 
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Kleinman Ill] has pointed out that, starting from a grid of &points, different 
subdivisions of the IBZ can be found that Will give different weights to the grid points 
in the linear interpolation scheme. But none of the subdivisions will weight the grid points 
according to their symmetry-induced multiplicity so that remarkable errors can occur (see 
also [12-141). Kleinman suggested that for cubic crystals (d = 3) the domain of integration 
should be extended to a cubic super Bz consisting of two FCC BZ or four BCC BZ His 
ansatz is equivalent to calculating [(E) and J(E) for different subdivisions of the im such 
that on average the grid points are correctly weighted according to their symmetry-induced 
multiplicity. His approach was refined by Hama and co-workers [14], who showed that the 
computational effort can be greatly reduced when certain subdivisions are considered. 

Van Hove p v e d  in his famous theorem 1151 that due to the periodicity of E(k) we 
always observe certain singularities in D ( E )  for which VE(k), i.e. the denominator in 
(I), vanishes. These singularities become more pronounced for lower d .  In order to treat 
them properly we have to use an interpolation of E that is (at least) quadratic in k. Thus 
to improve convergence of the linear simplex method, MacDonald and co-workers 1161 
suggested the hybrid simpfa method. Smting from the coarser grid of k-points a quadratic 
interpolation for E(k) is derived. It is used to define a finer grid of k-points, which can be 
evaluated by applying the standard linear simplex method. 

Recently Boon, Methfessel and Mueller (BMM) [17-191 and Wiesenekker, Velde and 
Baerends (m) t20.21 I succeeded in evaluating I ( E )  analytically for a piecewise quadratic 
interpolation of E in d = 2 and 3 dimensions (quadratic simplex method) so that their 
methods converge much faster than the linear simplex method. 

In order to obtain a piecewise quadratic interpolation for E and f they suggested 
subdividing the IBZ into spacefilling simplices r. such that the numerical values of E and 
f are given at the vertices and midpoints of the edges. This choice appears to be natural 
because the (d 4- I)(d+ 2)/2 expansion coefficients needed for a quadratic interpolation can 
be fixed uniquely in that way. In addition the interpolation is continuous at the interfaces 
of rv. They did not take into consideration that this ansatz misweights the grid points in a 
manner similar to the linear simplex method. 

The integration schemes of both BMM and WVB are analytic in nature. BMM resaicted 
the expansion of f(k) to first order in k. Thus they were able to obtain an expression for 
/ ( E )  which, as we will show, can be integrated analytically to get J ( E ) .  WVB used an 
algebraic approach based on an expansion of both E(k) and f ( k )  up to second order in k. 
This makes it more accurate when evaluating I (E). But as they could not find an analytical 
expression for J ( E ) ,  they suggested a numerical integration scheme for deriving J from 1. 
While the computational effort of BMM compares well with the linear simplex method, it is 
considerably larger for the second approach. 

In this paper we suggest some improvements on quadratic BZ integration in order 
to overcome its shortcomings noted above. First, we propose a piecewise quadratic 
interpolatory scheme that properly weights the grid points with respect to their symmetry 
induced multiplicity. Second, based on BMM, we derive analytical expressions for both 
I ( E )  and J ( E )  in d = 2 dimensions. In that way we properly treat the integrable Van 
Hove singularities in I ( E )  when J ( E )  is calculated. 

As an application to semiconductor physics we present in section 4 results of a 
self-consistent calculation of the DOS effective mass of holes in a G ~ A S - A ~ ~ , ~ G ~ , ~ A ~  
heteroshucture. The corresponding hole subbands are known to have a rather anisotropic 
and non-parabolic dispersion E(k) [221. 
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2. Interpolation of E and f 

In the linear simplex method the BZ is divided into space-filling simplices I-. such that 
the numerical values of & and f in the d + 1 vertices of each simplex provide a linear 
interpolation that can be evaluated analytically. Two examples of a subdivision for d = 2 
are shown in figure 1. 

Figure 1. (U)  Subdivision into triangles of ule ineducible wedge of Lhe nvMIiensional 

quadratic 0 2  The grid points an denoted 8; i is its weight acmrding to its symmetry-induced 
multiplicity, and i its weight in the quadratic interpalatory scheme (both in multiples of 1/432 
so that their sum equals 1). Those printed in bold correspond to vertices of the triangles shown. 
hence they are relevant for a l i i  inlerpolatory scheme. For a quadratic interpolation we also 
need the other grid points at the midpoints of Ihe edges. (b) Another suMivision of the BZ wilh 
proper symmetry. 

The basic idea of the quadratic simplex method is similar. The interpolation of &(k) is 
based on a second-order expansion 
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E(k) = E'O' +E% + k E% (3) 

where E"' is a d-dimensional vector and E(*) is a symmetric d x d matrix. A similar 
expression holds for f(k). We require (d + I)(d + 2)/2 numerical values of E and f in 
order to fix the expansion coefficients in (3). Commonly the subdivision is chosen such 
that E and f are given for the vertices and midpoints of the edges of the simplices r., see 
figure 1. 

At first glance it seems reasonable to restrict the procedure outlined above to an LBZ. 
But as pointed out by Kleinman Ell], it is impossible to find a subdivision of the mz 
into simplices which correctly weights the grid points according to their symmetry-induced 
multiplicity. This can result in remarkable errors in I ( E )  and J ( E ) .  In figure 1 we illushate 
this point for two subdivisions of a two-dimensional BZ. We compare. the weight of the grid 
points due to its symmetry-induced multiplicity with the weights that are assigned to these 
points in a quadratic interpolatory scheme. 

Kleinman [ 1 I ]  and Hama, Watanabe and Koto [ 141 argued that we have to extend the 
domain of integration to some larger part of k space such that we average over the values 
of I ( E )  and J ( E )  obtained for different subdivisions. When generalizing their idea to 
the quadratic simplex methcd we have to consider subdivisions (in addition to those in 
figure 1) where the role of grid points as being placed at the vertices and midpoints of 
the edges is interchanged. For example, one finds eight non-equivalent subdivisions of the 
twodimensional BZ that must be taken into consideration in a quadratic integration scheme. 

We suggest a slightly different approach, which might make it more obvious that the 
reason for these difficulties is that an inappropriate interpolation of E and f is used. This 
means that we can either average on the final results I ( E )  and J ( E )  obtained for different 
interpolating functions E(h) and f(k) (as in [ 11,14]), or we can derive from the beginning 
proper interpolating functions E(k) and f(k) that will satisfy crystal symmetry and correctly 
weight the grid points so that it becomes possible to restrict the domain of integration to an 
IBZ. 

We note that if we derive the interpolating functions E(k) and f(k) in the usual way 
described above, these functions are not unique. Let us consider a point somewhere in 
the B Z  The values &(h) and f(h) sensitively depend on which of the surrounding grid 
points are taken into account when we determine the expansion coefficients in (3). To be 
more specific we again consider a quadratic interpolation in the two-dimensional BZ. For 
each of the small triangles A,, (see figure 2) we find eight basic triangles r that might be 
used to fix the six expansion coefficients in (3). These eight sets of expansion coefficients 
have to be averaged in order to obtain a proper interpolation of E and f within A,. Hence 
we subdivide the IBZ into triangles A,, which are evaluated separately. We remark that the 
quadratic interpolation is continuous at the edges of A,. 

Our ansatz can be readily generalized to higher dimensions d and arbitrary orders of 
expansion of E(k) and f(k). but it seems to have no computational advantage over the 
approach of Kleinman. In both cases we have to sum (ford = 2) over eight times as many 
simplices compared with a simple subdivision shown in figure I(a). However the advantage 
of our procedure will become clear in subsection 3.4. 

In practical calculations we have to bear in mind that at k-points of high symmetry it 
is possible that two bands can touch each other. But at neighbouring points in k-space this 
degeneracy is lifted and the bands repel each other (we assume that bands are labelled in 
order of increasing energy: see also figure 2 in 1231). Gilat [24] pointed out that in these 
cases interpolatory schemes may lead to 'fortuitous' singularities in the ws, which are 
particularly pronounced if quadratic instead of linear interpolation is used. Obviously we 
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Figure 2 Full circles represent some part of a regular grid of &-points (d = 2). For each of 
the small hiangles Ap (bold lines) we find eight larger Piangles r (broken lines) which might 
provide a quadraiic interpolation within A,,. One such Piangle I- is marked with thin full lines: 
it might give an inleipolation within A&, and AV*. Open circles o repment additlord grid 
points that are uhed in the hybrid method. 

can avoid these difficulties if the degeneracy occurs at an apex of the IBZ so that this point 
can be used as a grid point of our calculation. This is the case in the example discussed 
in section 4. But in general these points can lie anywhere along an axis of high symmetry. 
In simplices A* containing such points the dispersion &(k) will not be exactly reproduced 
by a single interpolating function of first or second order in k. Nevertheless we want to 
emphasize that properly chosen interpolating functions &(k) of second order in k yield 
more accurate results than a linear interpolation. The reason for this is that each of these 
functions is used in a simplex A# which is actually smaller than the simplices r. that are 
normally used for a piecewise linear interpolation (see figure 2). 

3. Evaluation of I ( E )  and J(E)  

After having established proper second-order expansions &(k) and f ( k )  we consider the 
evaluation of the integrals I ( E )  and J ( E )  within Ap for d = 2. Three cases will be 
distinguished. (i) E(k)  = &lo’, der€[’’ = l€”’l = 0; (ii) &(k) =&lo) + €“’k, det E”’ = 0; 
(iii) &(le) = &lo’ + €“’le + kEC2’k, detEL2) # 0. The rarely occurring case of a singular 
yet non-vanishing matrix EL*’ can be included in (ii) by means of the hybrid method 
(subsection 3.4). We believe that the more elaborate discussion by WVB is in general 
not necessary. In the forthcoming we neglect for brevity the sum over A&. 

3.1. The constant case 

A constant energy dispersion gives the simple relation 

I ( E )  = 6 ( E  -&lo’) f(k)d’k. s, (4) 

Now the k integral only depends on f and even a quadratic expansion of that function can 
be used. One obtains [20] 

s, f W  d2k = f v  (fi2 + f 2 3  + f31) (5 )  
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where fi, are the values off  at the midpoints of the triangle edges and V is the area of A. 
Obviously if I ( E )  has to be evaluated for E > maxk,A(&(k)) then (5) is dm applicable 
when &(le) is not constant. 

3.2. The linear case 

The well known formulae for the linear telrahedmn method (d = 3) can be generalized to 
arbiaary dimensionsd [25]. We find for d = 2 

J ( E )  = O  E <&I (b) 

d 
dE 

f(E) = -J(E) (7) 

where and fi are the values of E and f at the ith vertex of A. It is assumed that the 
tuples (Ei, fi) are ordered according to El < €2 < 6. Note the difference between (5) and 
(W. 

33. The quadratic case 

We give a discussion of the quadratic case, which is improved in some points compared 
to BMM in [18,19]. We start with f ( k )  1, looking for an analytic expression for LICE). 
If both eigenvalues of have the same sign, the surface of constant energy S ( E )  is an 
ellipse, otherwise it is a hyperbola. This suggests we should change over to new coordinates 
that give a better parametrization of S(E) than Cartesian coordinates. To do this we first 
shift the coordinate and energy scale so that both E‘O) and E“’ vanish. For brevity we will 
use the same notation for the shifted dispersion E(k) = kEcZJk. 

Next, we can make a transformation to principal axes and change the scale so that 
E(k’) = f k i 2  -I k;’, although in general it is not necessary to do that explicitly. We obtain 

If both eigenvalues of E‘*) have the same sign, we use modified polar coordinates 
ki = & cos9 and k; = ,,E sinq, leading to 

D(E) = 2 J j z m j  I /&E -e)d&/d9. 
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Figure 3. (a) The density of states is pmpor t id  to the angle of the bold marlred pan of 
a surface of constant energy S(E1 which lies h i &  the uiangk. (b) The surface of consfant 
energy S(&ij) touches the line qk; IangentiaUy at kij. (pil(E) is half lhe angle that k# cuts 
out Of S ( E ) .  

Hence D ( E )  is proportional to the angle q of S(E)  which lies inside A; it corresponds to 
the bold marked part of S ( E )  shown in figure 3(a). 

The vertices of A are denoted by ki and Ei E &(ki). Asscciated with the edge Cki, le j l  

there is an energy kij such that S(&) touches the line kikj tangentially at a point kij, see 
figure 3(b). The energy is related to the angle q i j ( E )  by 

where q;j  is half the angle that the line kikj will cut out of S ( E ) .  Note that pjj(E) only 
depends on &j, which is invariant under the transformation k -P le'. 

The angle q j j (E)  describes how D ( E )  changes when E sweeps over the interval defined 
by Ei, Ej and &. Hence to get D ( E )  we sum q i j ( E )  over the three edges of A with an 
appropriate sign u;j. weight wij(E) and wnstant of integration c(E): 

(i) The sign uij is '-' ('+') if the origin of the coordinate frame lies on the same (opposite) 
si& of the line kjkj as the thii vertex of the triangle. 

(ii) We have wij(E) = 2 if S(& touches the line kikj inside the edge [k i ,  kj] and E lies 
inside the interval &tined by .$j and the closer of the apex energies &i, &I. 

(iii) We have wij(E) = 1 if E lies inside the interval [E;, ,511. 

(iv) Otherwise we have w(E) = 0. 

(v) In order to detennine the constants of integration within the intervals defined by &i and 
2i, we take advantage of the continuity of D ( E ) :  C ( E )  becomes a step function that is 
chosen such that it m o v e s  discontinuities introduced by wij(E) at &i and &j ,  except for 
a jump of 2R at E = 0 if the origin of the coordinate frame lies inside the triangle. 
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The integral of ( I  I )  is N ( E )  = 1" D(E')dE'. Starting from 

E 
@ij(E) = / pij(E')dE' 

= E cos-'(&) - &/= 
we obtain N ( E )  in a way similar to D ( E ) .  

We obtain 
If the eigenvalues of Et2' a~ opposite in sign we use modified hyperbolic coordinates. 

When we applied the analytic quadratic integration scheme to the simple tight-binding 
band E(k) = -~(cosnk,  + cosak,), as suggested by BMM, we found it necessary to treat 
one special case separately. It might happen that an edge [kj, k;] of the triangle is almost 
parallel to the light cone defined by the Minkowski mebic E@') = f (k i2-ki2) .  Hence kij 

and zi, are ill defined. In that case we suggest performing the affine transformation k -+ k' 
explicitly. Now we can determine the hypxbolic angle of a point on the edge [k,!, kj] from 
its energy E and the Cartesian coordinates of the vertices kj and kj. We find 

Vij(E) = 4 in la +BE1 

a = (I/y)[k:,Ej -kjy&i +o(qxEj - k 3 ) I  
B = (2/Y)[k;, - kiyl 
y = k;,E, - kjY& -U(kj,&, - !&&i) 

(14) 

where 

U = sgn [(kjs - kix)(kjy - kiY)] .  

BMM have shown that the above formulae can be generalized to deal with a linear 
function f ( k )  = f"' + f"'k.  The contribution of the second term can be evaluated with 
Gauss's theorem: 

s, f"'k8(E - kE"'k)d2k = -1 V[fc" [E"']-'e(E - k&"lk)]dzk s, 
= -4 LA f"' [E"']-' &(E - kE"'k)dS(k) (15) 

where nj are unit vectors normal to the edges of the triangle. Hence for calculating I ( E )  we 
need the onedimensional integrated DOS N$E) 5 1" D,!j(E') dE' along the edges [ki, kjl. 
The corresponding one-dimensional dispersion E ' @ )  can be readily derived from its two- 
dimensional counterpart. In general &'@) will be quadratic, except for a linear dispersion, 
which occurs when the edge is parallel to the light cone. Finally J ( E )  is obtained in a 
similar way from @ij(E) and the integrals of N@). All formulae are summarized in 
table 1. We want to mention that the integrals needed for J ( E )  always remain finite, even 
in the case of a Van Hove singularity in I ( @ .  
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3.4. The hybrid method 
BMM suggested a least-squares fit to obtain a linear (first-order) expansion for f(k) within 
each triangle. This yields an interpolation of f(k) that is discontinuous at the edges of 
the triangles, so that artificial singularities are introduced in { ( E )  and J(E). Nevertheless, 
while a quadratic (second-order) expansion of E(k) is essential to account for Van Hove 
singularities in the DOS, there is no fundamental need to use a quadratic expansion of f(k). 

Due to the subdivision into smaller triangles A,, discussed in section 2, we are led to a 
hybrid method [ 161 for f ( k )  in a natural way (except for the cases where (5 )  is applicable). 
The second-order interpolation for f(k) provides proper values for the ‘additional‘ grid 
points (open circles in figure 2). They are used to derive a linear interpolation o f f  within 
each triangle A,, so that (15) becomes applicable. This concept allows us to deal with 
strongly varying functions f(k). Its convergence compares well with WVB, but it keeps 
the advantage of BMM that we can integrate analytically over Van Hove singularities when 
calculating J(E) .  

4. Example 

In layered semiconductor structures like inversion layers and quantum wells a quasi-two- 
dimensional electron or hole gas c m  be realized. The interfaces behave like a confining 
potential while the in-plane motion remains continuous. Therefore the electron- and hole 
like states are characterized by a discrete quantum number i for the quantization in the 
growth direction and a two-dimensional wavevector k = (kx,  ky)  for the in-plane motion. 
The evaluation of two-dimensional k-space integrals is an important step within the self- 
consistent calculation of these states. 

As an example we discuss the hole subband structure in a GaAs-Al~.~Gao.sAs 
hetemjunction. We assume a hole concentration N. = 5 x 10” and the concentration 
of space charges in the GaAs depletion layer is Nd = I x IOi3 This system has been 
investigated experimentally [26] as well as theoretically [=I. 

Our description is based on the 4x4 Luttinger Hamiltonian. We use a quadrature method 
for the coupled integral equations in momentum space to calculate the multicomponent spin- 
split envelope function c;o (k, z)t. The Hartree potential is determined self-consistently from 
the charge density 

Note that the energy scale for holes is reversed, i.e. p(z)  results from occupied states above 
EF. The anisotropic and spin-split subband dispersion E;-(k) is shown in figure 4. It is 
used to calculate the DOS effective mass 

which is presented in figure 5. One can easily tmce back the singularities of m;<(E) to the 
extrema of E,, (k). In figure 5 we compare the exact converged results obtained for a rather 
fine grid of k-points with those for a coarser grid. The numerical results for the latter case 
agree much better with the former, if correctly weighted k-points are used. We think that 
in many applications the increased computational effort of a proper interpolation is justified 
by the increase in accuracy that can be achieved, in particular when BZ integration is only 
a small part of much larger computations. 

t Thc details of lhese calculations will be published elsewhere. 
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Figure A Anisolmpic and spin split hole subband dis- 
persion &,,(k) in a G a A s - A l ~ , ~ ~ , ~ A s  hernojunction 
for N, = 5 x IO" c d  and Nd = 1 x 1013m-3, T k  
full curves "spond to k in (IO) direction. while the 
broken curves are for (1 1). 

Figure 5. calculated Ws effenive mass m:,(E) 
mrresponding to the subband dispersion shown in 
figure 4. The Full curves an based on a grid of k- 
pim with Akz = Ak7 = 0.LWZA-I. for the bmkn 
and domd awes we used Ak, = Aky = 0.008 A-'. 
For the dotted line the interpolating quadratic form 
(3) was derived from only one subdivision similar U) 
figure ](a), hence one ean see ule insufliciencies of 
incarrectly weighted grid points. 

5. Summary and conclusions 

First, we have pointed out that for evaluating surface and volume integrals in the ddimen- 
sional Bz we need a properly chosen interpolation of both €(k) and f(k) in order to weight 
the grid points according to their symmetry-induced multiplicity. We find that the simplices 
have to be divided into smaller ones for which different interpolating functions must be used. 
Second, we have suggested some improvements on the quadratic ECZ integration method of 
BMM to overcome its shortcomings compared with WVB while keeping its advantage that 
both the surface integral I ( E )  and the volume integral J ( E )  can be calculated analytically. 
Hence, Van Hove singularities are properly taken into account. The analytical evaluation of 
J ( E )  is in particular useful when this quantity is needed only for a few values of E, e.g. 
at the Fermi energy &, and [ ( E )  is not needed at all. Such an example was given in (16). 

As an example we have appIied the two-dimensional quadratic BZ integration method 
in the self-consistent calculation of the hole subband structure in a GaAs-AIGaAs 
heterojunction. 

It is noteworthy that, compared with previous work, in ow approach subdividing the 
domain of integration into space-filling simplices has become less important. In some cases 
it might be preferable that the quadratic form (3) is derived by means other than averagbg 
over a certain class of simplices. Moreover our discussion in section 3.3 on the evaluation 
of the quadratic form can be readily generalized to arbitrary convex polygons. 
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